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Methods and design

PARTICIPANTS & PROCEDURE

• Participants: large cross-linguistic dataset (4 languages: Danish, German, Mandarin, Japanese)

involving 162 participants with SCZ (104 DK, 51 CH, 7 JP) and 172 matched controls (116 DK, 43 CH,

13 JP).

• Speech task: the Animated Triangle Task, open-ended description of animated videos.

• Clinical data: SANS, SAPS, PANSS
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AIMS

BACKGROUND

• Voice atypicalities, e.g.longer pauses 

or flattened intonation, are a 

distinctive feature of 

schizophrenia often associated 

with specific symptoms. 

• Computerized voice analysis is a 

promising tool for identifying vocal 

markers of neuropsychiatric 

disorders:

• Machine learning (ML) models 

have shown high classification 

performance in predicting 

patients’ diagnosis and symptoms 

(De Boer et al., 2021; Cohen et al., 

2021)

Introduction

We assessed the generalizability of voice-based ML models: 

• Q1: How well do ML models generalize to different participants 

speaking the same language?

• Q2: How well do ML models generalize to participants speaking a 

different native language?

• Q3: Does combining models trained on different languages help 

improve generalization performance when predicting participants 

speaking a different language?

• Q4: Does training models on a multilingual training set, i.e. 

combining participants speaking different languages, help improve 

generalization performance?

ML PIPELINE

• A rigorous pipeline to minimize

overfitting:

• Acoustic features: Covarep,

eGeMaps

• Elastic net feature selection

• Train, validation and hold-out sets to

avoid data leakage

• Five-fold CV on the training set only

• Stratified training sets (sex and

diagnosis )

• Mixture of Experts (MoE) models

• Peformance: F1 metric

MODEL TRAINING AND TESTING

We tested model generalizability on:

• Q1: different participants, speaking

the same language (hold-out test

set);

• Q2: different participants, speaking a

different language.

We compared predictive performance:

• (i) models tested on a single

language

• (ii) MoE models, i.e., ensemble of

predictions of models trained on

different languages

• (iii) multi-language models trained on

multi-languages datasets.

OPEN ISSUES

• However, recent works 

(Parola et al. ,2020, 2022 a,b) 

show that generalizability of 

voice-markers is an issue. 

• It is unclear whether voice-

based ML models 

generalize to different 

samples and languages: 

can we use a model trained 

on English to predict Danish 

data?

• The assessment of 

generalization performance 

is crucial for clinical 

applicability. 
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Results

Q1: Train/Test same language

Discussion

• Q1) Model performance comparable to state-of-the art findings

(F1 ~ 70%-80%) when trained and tested on participants

speaking the same language (out-of-sample performance).

• Q2) Crucially the ML models did not generalize well -

performance close to chance - when trained in a language and

tested on new languages

• Q3 and Q4) MoE and multi-language models show a slight

increase of performance (F1 up to 55%-60%), but still far from

those requested for clinical applicability.

• Cross-linguistic generalizability of voice-based ML models of

schizophrenia is limited. If our first goal clinical appliicability,

we need to account for this variability.

MAIN FINDINGS

RECOMMENDATIONS FOR FUTURE STUDIES

• 1) Larger open datasets to test: a) the generalizability of voice-

based ML models across different speech tasks, heterogeneous

clinical profiles, languages b) presence of bias

• 2) Rigorous pipeline to increase robustness and generalizability of

ML models

• 3) Transfer learning: Tasks which allow a better transfer: e.g.,

emotional content, or relevant psychopathological dimensions.

Q3 : Mixture of Experts Models Q4: Multilanguage Models
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