Vocal markers of neuropsychiatric conditions: assessing the generalizability
of machine learning models and their clinical applicability
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Introduction

BACKGROUND

 Voice atypicalities, e.g.longer pauses

or flattened intonation, are a
distinctive feature of

schizophrenia often associated
with specific symptoms.

« Computerized voice analysis is a
promising tool for identifying vocal .
markers of neuropsychiatric
disorders:

« Machine learning (ML) models
have shown high classification
performance in predicting
patients’ diagnosis and symptoms
(De Boer et al., 2021; Cohen et al., :
2021)

AIMS
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OPEN ISSUES

However, recent works
(Parola et al. ,2020, 2022 a,b)
show that generalizability of
voice-markers is an issue.

\ 4

It is unclear whether voice-
based ML models
generalize to different
samples and languages:
can we use a model trained
on English to predict Danish

data? ‘

The assessment of
generalization performance
Is crucial for clinical
applicability.

We assessed the generalizability of voice-based ML models:

Q1: How well do ML models generalize to different participants
speaking the same language?

* Q2: How well do ML models generalize to participants speaking a
different native language?

* Q3: Does combining models trained on different languages help
Improve generalization performance when predicting participants
speaking a different language?

* Q4: Does training models on a multilingual training set, i.e.
combining participants speaking different languages, help improve
generalization performance?

Results
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Methods and design

PARTICIPANTS & PROCEDURE

« Participants: large cross-linguistic dataset (4 languages: Danish, German, Mandarin, Japanese)
involving 162 participants with SCZ (104 DK, 51 CH, 7 JP) and 172 matched controls (116 DK, 43 CH,

13 JP).

« Speech task: the Animated Triangle Task, open-ended description of animated videos.

e Clinical data: SANS, SAPS, PANSS
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A rigorous pipeline to minimize
overfitting:

« Acoustic features: Covarep,
eGeMaps

 Elastic net feature selection

* Train, validation and hold-out sets to
avoid data leakage

* Five-fold CV on the training set only

« Stratified training sets (sex and
diagnosis)

* Mixture of Experts (MoE) models
 Peformance: F1 metric

MODEL TRAINING AND TESTING
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We tested model generalizability on:

Q1: different participants, speaking
the same language (hold-out test
set);

Q2: different participants, speaking a
different language.

We compared predictive performance:

(i) models tested on a single
language

(i) MoE models, i.e., ensemble of
predictions of models trained on
different languages

(iii) multi-language models trained on
multi-languages datasets.

MAIN FINDINGS

* Q1) Model performance comparable to state-of-the art findings
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(F1 ~ 70%-80%) when trained and tested on participants
speaking the same language (out-of-sample performance).

did not generalize well -
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« Q3 and Q4) MoE and multi-language models show a slight

to 55%-60%), but still far from

B those requested for clinical applicability.
« Cross-linguistic generalizability of voice-based ML models of
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schizophrenia is limited. If our first goal clinical appliicability,
we need to account for this variability.

RECOMMENDATIONS FOR FUTURE STUDIES

- 1) Larger open datasets to test: a) the generalizability of voice-
s et based ML models across different speech tasks, heterogeneous
clinical profiles, languages b) presence of bias

« 2) Rigorous pipeline to increase robustness and generalizability of

« 3) Transfer learning: Tasks which allow a better transfer: e.g.,

emotional content, or relevant psychopathological dimensions.
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