Vocal markers of neuropsychiatric conditions: assessing the generalizability of machine learning models and their clinical applicability

Alberto Parola ^{a, c}, Astrid Rybner ^b, Emil Trenckner Jessen ^b, Marie Damsgaard Mortensen ^b, Stine Nyhus Larse ^b, Arndis Simonsen ^d, Jessica Mary Lin ^b, Yuan Zhou ^e, Huiling Wang ^f, Shiho Ubukata ^g, Katja Koelkebeck ^{h,i}, Vibeke Bliksted ^d, Riccardo Fusaroli ^{b, l}

a Center for Language Technology, Copenhagen University, Denmark b Department of Linguistics, Cognitive Science and Semiotics, Aarhus University c Department of Psychology, University of Turin, Italy, d Psychosis Research Unit - Department of Clinical Medicine, Aarhus University, Aarhus, Denmark, e Institute of Psychology, Chinese Academy of Sciences, Beijing, China, f Department of Psychiatry, Kyoto University, Japan, g LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Hospital and Institute of the University of Duisburg-Essen, Germany,.

Introduction

BACKGROUND

- Voice atypicalities, e.g.longer pauses or flattened intonation, are a distinctive feature of schizophrenia often associated with specific symptoms.
- **Computerized voice analysis** is a promising tool for identifying vocal markers of neuropsychiatric disorders:
- Machine learning (ML) models

OPEN ISSUES

 However, recent works (Parola et al. ,2020, 2022 a,b) show that generalizability of voice-markers is an issue.

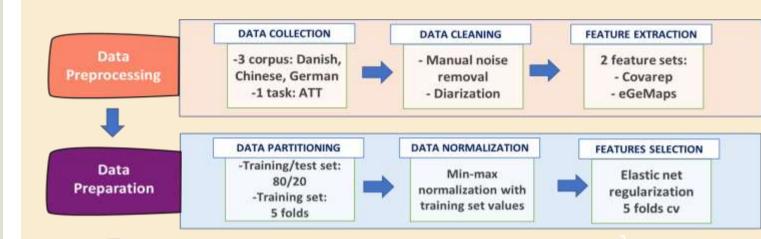
 It is unclear whether voicebased ML models generalize to different samples and languages: can we use a model trained

Methods and design

PARTICIPANTS & PROCEDURE

- <u>Participants</u>: large cross-linguistic dataset (4 languages: Danish, German, Mandarin, Japanese) involving 162 participants with SCZ (104 DK, 51 CH, 7 JP) and 172 matched controls (116 DK, 43 CH, 13 JP).
- · Speech task: the Animated Triangle Task, open-ended description of animated videos.
- Clinical data: SANS, SAPS, PANSS

ML PIPELINE



- A rigorous pipeline to minimize overfitting:
- Acoustic features: Covarep, eGeMaps
- Elastic net feature selection
- Train, validation and hold-out sets to avoid data leakage

have shown high classification performance in predicting patients' diagnosis and symptoms (De Boer et al., 2021; Cohen et al., 2021)

speaking the same language?

speaking a different language?

different native language?

generalization performance?

We assessed the generalizability of voice-based ML models:

• **Q1:** How well do ML models generalize to different participants

• Q2: How well do ML models generalize to participants speaking a

• Q3: Does combining models trained on different languages help

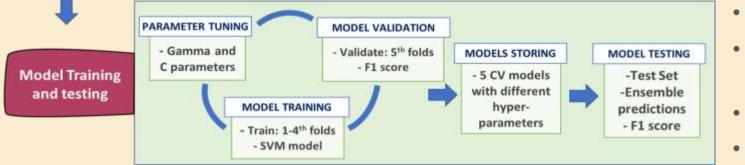
• Q4: Does training models on a multilingual training set, i.e.

improve generalization performance when predicting participants

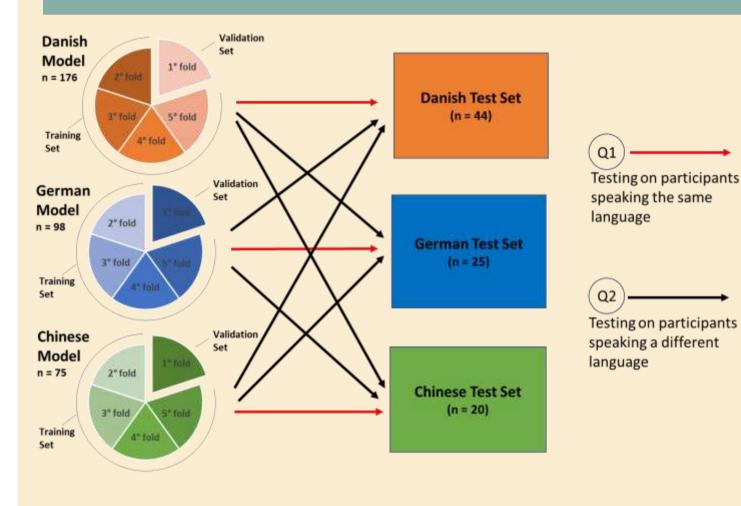
combining participants speaking different languages, help improve

on English to predict Danish data?

 The assessment of generalization performance is crucial for clinical applicability.



MODEL TRAINING AND TESTING



We tested model generalizability on:

- Q1: different participants, speaking the same language (hold-out test set);
- Q2: different participants, speaking a different language.

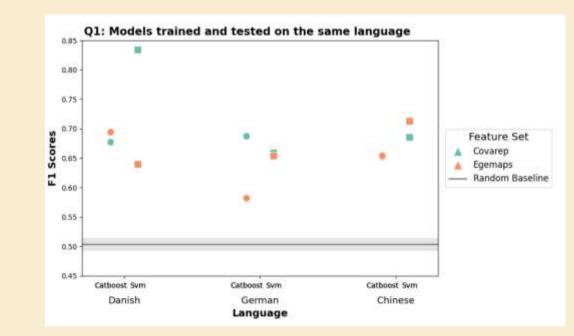
We compared predictive performance:

- (i) models tested on a single language
- (ii) MoE models, i.e., ensemble of predictions of models trained on different languages
- (iii) multi-language models trained on multi-languages datasets.

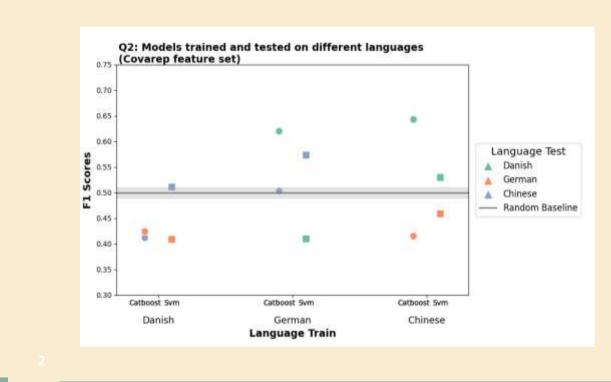
Results

AIMS

Q1: Train/Test same language



Q2: Train/Test different language



Discussion

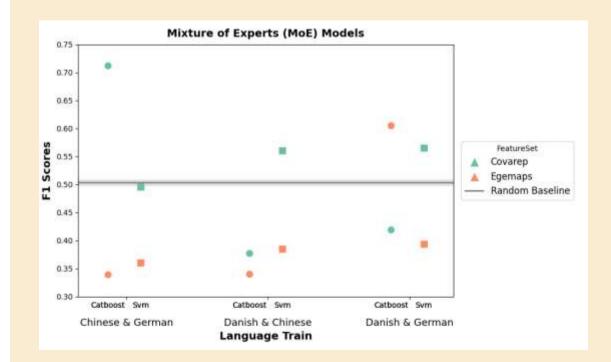
MAIN FINDINGS

- Q1) Model performance comparable to state-of-the art findings (F1 ~ 70%-80%) when trained and tested on participants speaking the same language (out-of-sample performance).
- Q2) Crucially the ML models did not generalize well performance close to chance when trained in a language and

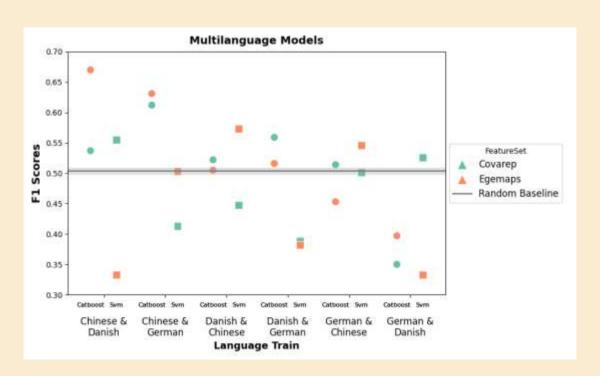
• Five-fold CV on the training set only

- Stratified training sets (sex and diagnosis)
- Mixture of Experts (MoE) models
- Peformance: F1 metric

Q3: Mixture of Experts Models



Q4: Multilanguage Models



tested on new languages

- Q3 and Q4) MoE and multi-language models show a slight increase of performance (F1 up to 55%-60%), but still far from those requested for clinical applicability.
- Cross-linguistic generalizability of voice-based ML models of schizophrenia is limited. If our first goal clinical appliicability, we need to account for this variability.

RECOMMENDATIONS FOR FUTURE STUDIES

- 1) Larger open datasets to test: a) the generalizability of voicebased ML models across different speech tasks, heterogeneous clinical profiles, languages b) presence of bias
- 2) Rigorous pipeline to increase robustness and generalizability of ML models
- 3) Transfer learning: Tasks which allow a better transfer: e.g., emotional content, or relevant psychopathological dimensions.

References

Parola, A., Simonsen, A., Lin, J. M., Zhou, Y., Huiling, W., Ubukata, S., ... & Fusaroli, R. (2022). Voice patterns as markers of schizophrenia: building a cumulative generalizable approach via cross-linguistic and meta-analysis based investigation. medRxiv.
Parola, A., Lin, J. M., Simonsen, A., Bliksted, V., Zhou, Y., Wang, H., ... & Fusaroli, R. (2022). Speech disturbances in schizophrenia: assessing cross-linguistic and meta-analysis based investigation.

- Parola, A., Simonsen, A., Bliksted, V., & Fusaroli, R. (2020). Voice patterns in schizophrenia: A systematic review and Bayesian meta-analysis. Schizophrenia research, 216, 24-40.
- De Boer, J. N., Voppel, A. E., Brederoo, S. G., Schnack, H. G., Truong, K. P., Wijnen, F. N. K., & Sommer, I. E. C. (2021). Acoustic speech markers for schizophrenia-spectrum disorders: a diagnostic and symptom-recognition tool. Psychological medicine, 1-11.

Alberto Parola alberto.parol@gmail.com